

Specifications for LCD module

Customer	
Customer part no.	
Ampire part no.	AM-800480BTMQW-A0H-A
Approved by	
Date	

Preliminary Specification

☑ Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221, Taiwan (R.O.C.)

22181 新北市 汐止區 新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Mark	Tank

*This specification is subject to change without notice.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2021/09/28	-	New release	Tank

1. Features

It's a 7 inches Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 7" TFT-LCD panel, LED backlight.

- (1) Construction: 7" a-Si TFT active matrix, White LED Backlight.
- (2) Resolution (pixel): 800(R.G.B) X480
- (3) Number of the Colors : 16.7M colors (R , G , B 8 bit digital each)
- (4) LCD type : Transmissive, normally White
- (5) Interface: LVDS
- (6) Viewing Direction: 6 o'clock (Gray inversion)
- (7) LCD Driver IC: HX8264-D06 (Source IC) & HX8664-B (Gate IC)
- (8) New LED Driver TPS61185

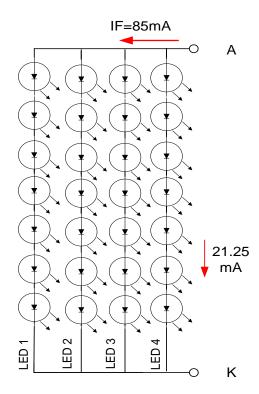
Item	Specifications	unit
LCD size	7 inch (Diagonal)	
Resolution	800 x (RGB) x 480	dot
Pixel pitch	0.192(W) x 0.1805(H)	mm
Active area	153.6(W) x 86.64(H)	mm
Module size	164.9(W) x 100(H) x 9.65(D)	mm
Color arrangement	RGB-stripe	
interface	Digital	

2. PHYSICAL SPECIFICATIONS

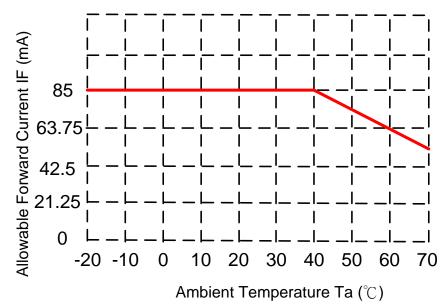
3. ABSOLUTE MAX. RATINGS

Itom	Values			Unit	Demeril	
ltem	Symbol	MIN	ΤΥΡ	MAX	Unit	Remark
Power Voltage	VDD	-0.5		5	V	
LED Driver Power Voltage	VLED	-0.3		19	V	
Operation Temperature	Тор	-20		70	°C	
Storage Temperature	Тѕт	-30		80	°C	

Note 1 The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.


4. Backlight Driving Conditions

ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE
LED Driver Power Voltage	VLED		12	19	V	
LED Driver Power Current	ILED(VLED=12V)		205		mA	Ta=25°C
PWM Dimming DC	VDIMH	2.1		6	V	
active level	VDIML	0		0.8	V	
PWM Dimming Freq.	FDIM	0.2		20	kHz	
BLEN Pin High Voltage	VBLENH	2.1		6	V	
BLEN Pin Low Voltage	VBLENL	0		0.8	V	
LED voltage	VAK		23.1		V	Note 1
LED current	IF		85		mA	Note 1
LED life time			30		kHrs	Note 2

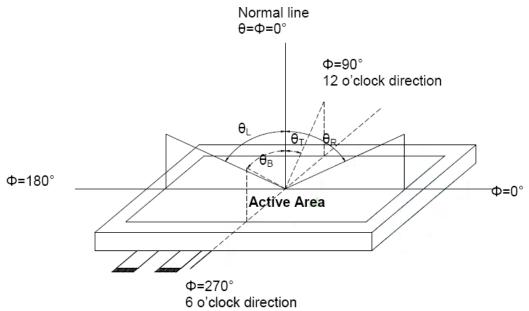

Note (1)

The LED Supply Voltage is defined by the number of LED at Ta=25°C and IF=85 mA.

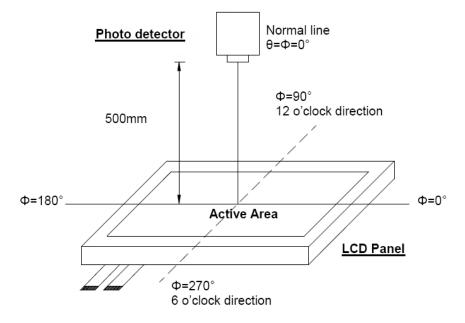
Note (2) The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IF=85mA. The LED lifetime could be decreased if operating IF is larger than 85mA.

Note (3) When LCM is operated over 40° C ambient temperature, the IF should be follow :

5. Optical Specifications

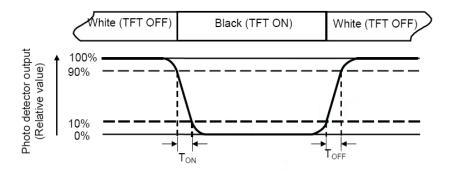

Itom	Symbol	Condition		Values		Unit	Note	
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	NOLE	
	θL	Φ = 180° (9 o'clock)	60	70				
Viewing angle	heta R	Φ = 0° (3 o'clock)	60	70			Neted	
(CR≧10)	θΤ	Φ = 90° (12 o'clock)	40	50		degree	Note1	
	θΒ	Φ = 270° (6 o'clock)	50	60				
Deenenee time	TON			5	7	msec	Noto 2	
Response time	TOFF			20	28	msec	Note3	
Contrast ratio	CR	-	400	500			Note4	
	WX		0.26	0.31	0.36			
	WY		0.32	0.37	0.42			
	RX	Normal	0.57	0.62	0.67			
Color	RY	<i>θ</i> =Φ=0°	0.31	0.36	0.41		Note5	
chromaticity	GX		0.30	0.35	0.40		Note6	
	GY		0.55	0.60	0.65			
	BX		0.06	0.11	0.16			
	BY		0.07	0.12	0.17			
Luminance (central point)	L		400	500		cd/m ²	Note6	
Luminance uniformity	YU		70	75		%	Note6	

Test Conditions:


VDD = 3.3V, IF = 85mA (Backlight current), the ambient temperature is 25° C.

The test systems refer to Note 2.

Note (1) Definition of viewing angle range



Note (2) Definition of optical measurement system The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° / Height: 500mm.)

Note (3) Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 90% to 10%. And fall time (TOFF) is the time between photo detector output intensity changed from 10% to 90%.

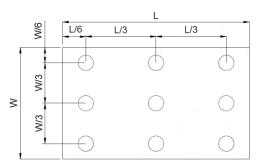
Note (4) Definition of contrast ratio

Luminance measured when LCD on the "White" state

Contrast ratio (CR) =

Luminance measured when LCD on the "Black" state

- Note (5) Definition of color chromaticity (CIE1931)
 Color coordinated measured at center point of LCD.
 All input terminals LCD panel must be ground when measuring the center area of the panel.
- Note (6) Definition of Luminance Uniformity Active area is divided into 9 measuring areas (Refer to bellow figure). Every measuring point is placed at the center of each measuring area.


Bmin

Luminance Uniformity (Yu) = -

Bmax

L ----- Active area length

W ----- Active area width

Bmax : The measured maximum luminance of all measurement position. Bmin : The measured minimum luminance of all measurement position.

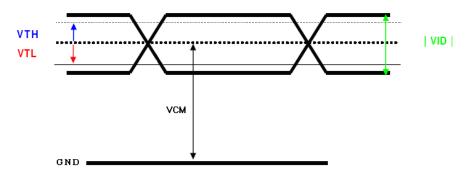
6. INTERFACE

CN2:P1.0 20Pin/CP100-S20G-H16 or Equivalent

Pin No.	Symbol	Function
1	VDD	POWER SUPPLY
2	VDD	POWER SUPPLY
3	GND	Power Ground
4	GND	Power Ground
5	IN0-	Transmission Data of Pixels
6	IN0+	Transmission Data of Pixels
7	GND	Power Ground
8	IN1-	Transmission Data of Pixels 1
9	IN1+	Transmission Data of Pixels 1
10	GND	Power Ground
11	IN2-	Transmission Data of Pixels 2
12	IN2+	Transmission Data of Pixels 2
13	GND	Power Ground
14	CLK-	Sampling Clock
15	CLK+	Sampling Clock
16	GND	Power Ground
17	IN3-	Transmission Data of Pixels 3
18	IN3+	Transmission Data of Pixels 3
19	GND	Power Ground
20	GND	Power Ground

I: input, O: output, P: power

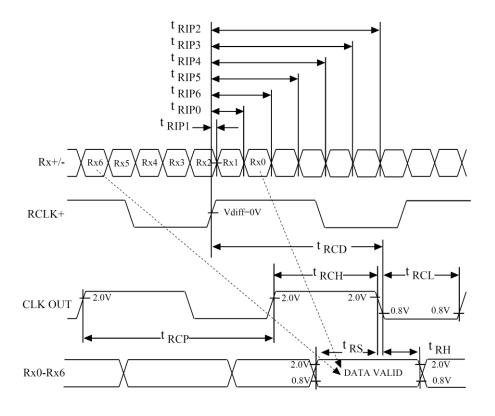
CN3: ENTERY 3808K-F05N-03L or Equivalent, Mating Connector: ENTERY H208K-P05N-02B or Equivalent


1	VLED	Power supply of LED driving circuit				
2	BLEN	LED BLU ON/OFF, High: enable, Low: disable				
3	GND	Power Ground				
4	DIM	Adjust the LED brightness by PWM				
5	NC	No connection				

Note 1 BLU means Backlight Unit

7. ELECTRICAL CHARACTERISTICS

7.1 DC Characteristics


Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Digital Power Supply Voltage	VDD	3.0	3.3	3.6	V	
Digital Power Supply Current	IDD		110		mA	
Differential Input High Threshold	VTH			100	mV	VCM=1.2V
Differential Input Low Threshold	VTL	-100			mV	
Input current	IIN	-10		+10	uA	
Differential input Voltage	VID	0.2		0.6	V	
Common Mode Voltage Offset	VCM	$\frac{ VID }{2}$	1.25	$2.4 - \frac{ VID }{2}$	V	

7.2 AC Characteristics

LVDS timing

RECEIV	'ER				
t _{RCP}	CLK OUT Period	11.76	Т	50.0	ns
t _{RCH}	CLK OUT High Time		4T/7		ns
t _{RCL}	CLK OUT Low Time		3T/7		ns
t _{RCD}	RCLK+/- to CLK OUT Delay		5T/7		ns
t _{RS}	TTL Data Setup to CLK OUT	3T/7-2.5			ns
t _{RH}	TTL Data Hold from CLK OUT	4T/7-3.5			ns
t _{TLH}	TTL Low to High Transition Time		3.0	5.0	ns
t _{THL}	TTL High to Low Transition Time		3.0	5.0	ns
t _{RIP1}	Input Data Position 0 (T=11.76ns)	-0.4	0.0	0.4	ns
t _{RIP0}	Input Data Position 1 (T=11.76ns)	T/7-0.4	T/7	T/7+0.4	ns
t _{RIP6}	Input Data Position 2 (T=11.76ns)	2T/7-0.4	2T/7	2T/7+0.4	ns
t _{RIP5}	Input Data Position 3 (T=11.76ns)	3T/7-0.4	3T/7	3T/7+0.4	ns
t _{RIP4}	Input Data Position 4 (T=11.76ns)	4T/7-0.4	4T/7	4T/7+0.4	ns
t _{RIP3}	Input Data Position 5 (T=11.76ns)	5T/7-0.4	5T/7	5T/7+0.4	ns
t _{RIP2}	Input Data Position 6 (T=11.76ns)	6T/7-0.4	6T/7	6T/7+0.4	ns
t _{RPLL}	Phase Lock Loop Set			10.0	ms

Note: 1) Vdiff = $(RA+) - (RA-), \dots (RCLK+) - (RCLK-)$

7.3 TTL Timing

Horizontal timing

Parameter	Symbol		Unit		
Falalleter	Symbol	Min.	Тур.	Max.	Unit
Horizontal Display Area	thd		800		DCLK
DCLK frequency	fclk	-	30	50	MHz
One Horizontal Line	th	889	928	1143	DCLK
HS pulse width	thpw	1	48	255 🧷	DCLK
HS Back Porch (Blanking)	thb		88		DCLK
HS Front Porch	thfp	1	40	255	DCLK
DE mode Blanking	th-thd	85	128	512	DCLK

Vertical timing

Parameter	Symbol	Spec.			Unit
Falailletei		Min.	Тур.	Max.	Unit
Vertical Display Area	tvd		480		Τ _Η
VS period time	t∨	513	525	767	T _H
VS pulse width	tvpw	3	3	255	T _H
VS Back Porch (Blanking)	tvb	23	32	NY Y	Τ _Η
VS Front Porch	t∨fp		13	255	T _H
DE mode Blanking	tv-tvd	< 4	45	255	T _H
		~//~	11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Horizontal timing

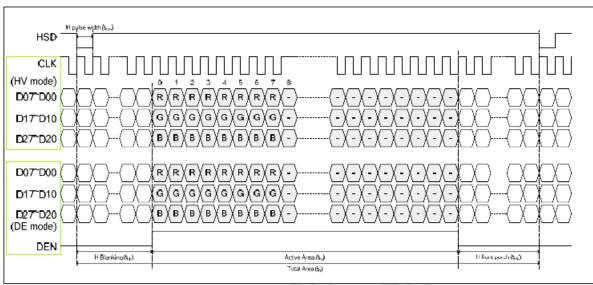


Figure 11. 1: Horizontal Input Timing Diagram

Vertical timing

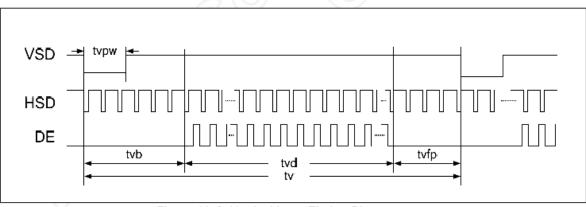
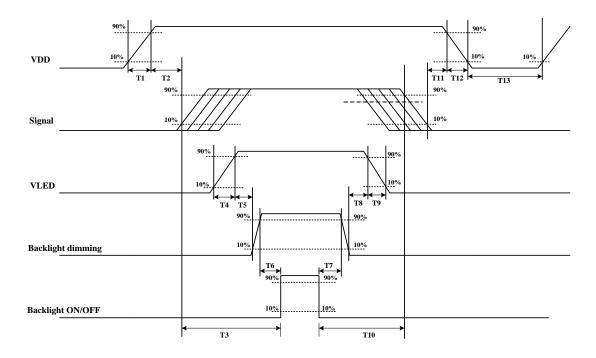
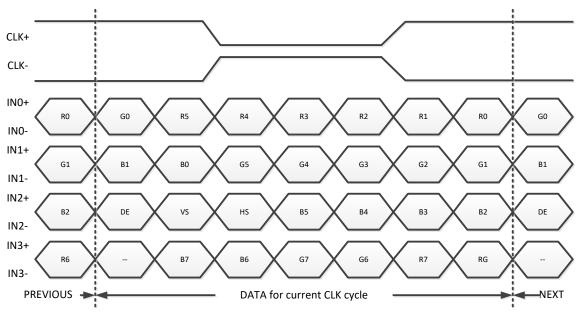



Figure 11. 2: Vertical Input Timing Diagram


7.4 Power ON/OFF sequence

VDD power and LED on/off sequence are as follows. Interface signals are also shown in the chart. Signal shall be Hi-Z state or low level when VDD is off.

Parameter		Linita		
	Min.	Тур.	Max.	Units
T1	0.5	-	10	[ms]
T2	0	40	50	[ms]
T3	200	-	-	[ms]
T4	0.5	-	10	[ms]
T5	10	-	-	[ms]
T6	10	-	-	[ms]
T7	0	-	-	[ms]
T8	10	-	-	[ms]
T9	-	-	10	[ms]
T10	110	-	-	[ms]
T11	0.5	16	50	[ms]
T12		-	100	[ms]
T13	1000	_	_	[ms]

Note: R/G/B data 7: MSB, R/G/B data 0: LSB

	Note: R/G/B data 7: MSB, R/G/B data 0: LSB					
Signal Name	Description	Remark				
R7	Red Data 7 (MSB)					
R6	Red Data 6					
R5	Red Data 5	Red-pixel Data				
R4	Red Data 4	Each red pixel's brightness data consists of				
R3	Red Data 3	these 8 bits pixel data.				
R2	Red Data 2					
R1	Red Data 1					
R0	Red Data 0 (LSB)					
G7	Green Date 7 (MSB)					
G6	Green Date 6					
G5	Green Date 5	Crean pixel Date				
G4	Green Date 4	Green-pixel Data				
G3	Green Date 3	Each green pixel's brightness data consists of				
G2	Green Date 2	these 8 bits pixel data.				
G1	Green Date 1					
G0	Green Date 0 (LSB)					
B7	Blue Data 7 (MSB)					
B6	Blue Data 6					
B5	Blue Data 5	Plue pixel Date				
B4	Blue Data 4	Blue-pixel Data				
B3	Blue Data 3	Each blue pixel's brightness data consists of				
B2	Blue Data 2	these 8 bits pixel data.				
B1	Blue Data 1					
B0	Blue Data 0 (LSB)					
CLK+						
CLK-	LVDS Clock Input					
DE	Display Enable					
VS	Vertical Sync Signal					
HS	Horizontal Sync Signal					

8. RELIABILITY TEST CONDITIONS

Test Item	Test Conditions	
High Temperature Operation	70±3°C, t=240 hrs	
Low Temperature Operation	-20±3°C, t=240 hrs	
High Temperature Storage	80±3°C, t=240 hrs	1,2
Low Temperature Storage	-30±3°C, t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2

Note(1) Condensation of water is not permitted on the module.

Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Note(3) The module shouldn't be tested over one condition, and all the tests are independent.

Note(4) All reliability tests should be done without the protective film.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9. General Precautions

9.1 Safety

(1) Liquid crystal is poisonous. Do not put it your month. If the liquid crystal touches you skin or clothes, you need to wash it off immediately with the soap and water.

9.2 Handling

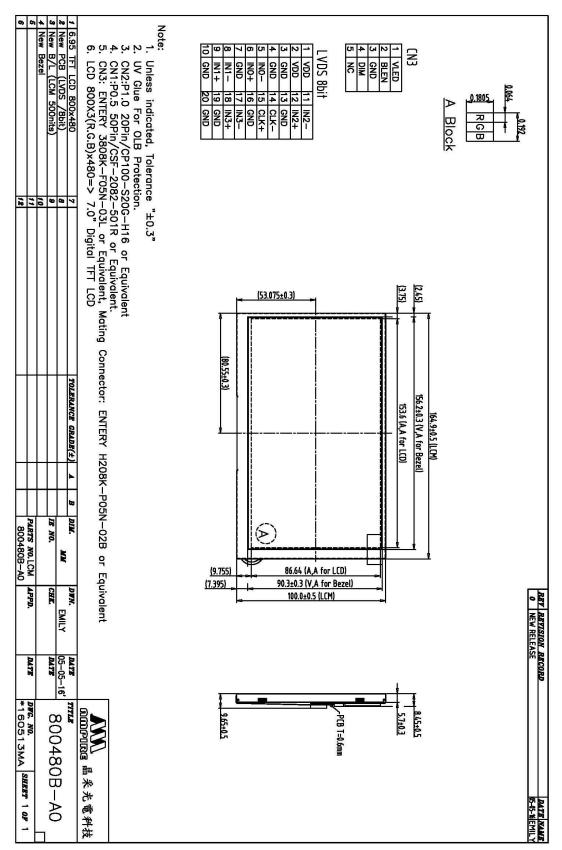
- (1) The LCD panel is plate glass. Do not subject the panel to mechanical shock or excessive force on its surface.
- (2) The polarizer which attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- (3) To avoid contamination on the display surface, do not touch the module surface with bare hands.
- (4) Keep a space so that the LCD panels do not touch other components.
- (5) Put on cover board such as acrylic board, which covers on the surface of LCD panel to protect panel from damages.
- (6) Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
- (7) Do not leave module in direct sunlight to avoid malfunction of the ICs.

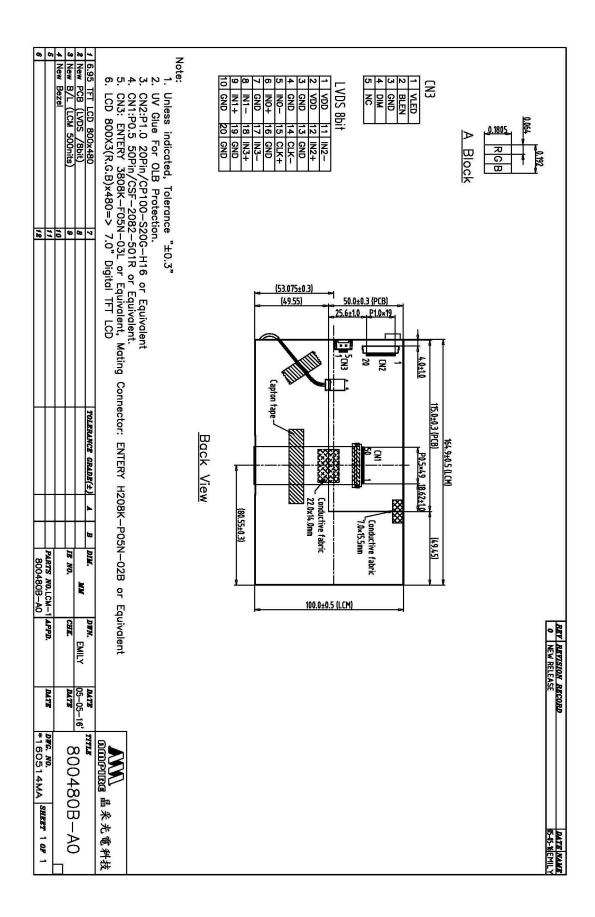
9.3 Static Electricity

- (1) Be sure to ground module before you turn on power or operation module.
- (2) Do not apply voltage which exceeds the absolute maximum rating value.

9.4 Storage

- (1) Store the module in a dark room where it must keep at +25±10 $^{\circ}$ C and 65%RH or less.
- (2) Do not store the module in surroundings which are containing organic solvent or corrosive gas.
- (3) Store the module in an anti-electrostatic container or bag.


9.5 Cleaning


- (1) Do not wipe the polarizer with dry cloth. It might cause scratch.
- (2) Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

9.6 Others

- (1) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.
- (2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

10. OUTLINE DIMENSION

